
F UL L ART I C L E

Segmentation of Drosophila heart in optical coherence
microscopy images using convolutional neural networks

Lian Duan1 | Xi Qin1 | Yuanhao He1 | Xialin Sang1,2 | Jinda Pan3 | Tao Xu1,4 | Jing Men5 |

Rudolph E. Tanzi6 | Airong Li6 | Yutao Ma4 | Chao Zhou1,5*

1Department of Electrical and Computer
Engineering, Lehigh University, Bethlehem,
Pennsylvania
2Department of Electrical Engineering and
Computer Science, Hainan University, Haikou,
China
3School of Precision Instrument and
Optoelectronics Engineering, Tianjin University,
Tianjin, China
4State Key Laboratory of Software Engineering,
Wuhan University, Wuhan, China
5Department of Bioengineering, Lehigh
University, Bethlehem, Pennsylvania
6Genetics and Aging Research Unit, Department
of Neurology, Massachusetts General Hospital and
Harvard Medical School, Boston, Massachusetts

*Correspondence
Chao Zhou, Department of Electrical and
Computer Engineering, Lehigh University,
19 Memorial Drive West, 18015, Bethlehem,
Pennsylvania.
Email: chaozhou@lehigh.edu

Funding information
Lehigh University, Grant/Award Number: Start-Up
Fund; National Institutes of Health, Grant/Award
Numbers: K99/R00-EB010071, R15-EB019704,
R21- EY026380, R01-EB025209; National Key
Basic Research Program of China, Grant/Award
Number: 20014CB340404; National Science
Foundation, Grant/Award Number: DBI-1455613

Convolutional neural networks
(CNNs) are powerful tools for image
segmentation and classification. Here,
we use this method to identify and
mark the heart region of Drosophila at
different developmental stages in the
cross-sectional images acquired by a
custom optical coherence microscopy
(OCM) system. With our well-trained
CNN model, the heart regions through
multiple heartbeat cycles can be
marked with an intersection over union of ~86%. Various morphological and
dynamical cardiac parameters can be quantified accurately with automatically seg-
mented heart regions. This study demonstrates an efficient heart segmentation
method to analyze OCM images of the beating heart in Drosophila.
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1 | INTRODUCTION

As one of the rapidly emerging imaging technologies for the
biomedical research, optical coherence tomography (OCT)
enables two-dimensional (2D) cross-sectional and three-
dimensional (3D) structural imaging of tissues in vivo [1–3].
With high resolution and imaging speed, OCT has been
widely used to provide morphological and functional infor-
mation in ophthalmology, cardiology and other biomedical
fields [2–4]. Optical coherence microscopy (OCM) com-
bines the coherent detection methods of OCT and confocal
detection to achieve enhanced penetration depth [5, 6].
OCM and OCT have been widely used in the field of

developmental biology, including heart development of ani-
mal models such as zebrafish [7], Drosophila [8–12] and
chick embryos [13–17] etc.

Drosophila melanogaster, or commonly known as fruit
fly, is an important model system for developmental biology
and genetic studies. There are many similarities between
Drosophila and vertebrates in terms of early stage heart
development [18]. About 75% of disease-causing genes in
humans are estimated to have functional orthologs in Dro-
sophila [19], and a homeobox gene [20, 21] controlling car-
diac specification and morphogenesis is in both Drosophila
and human. Thus functional analysis and genetic studies on
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Drosophila hearts can potentially apply to human heart
development, disease and functional studies.

We have been using OCM to monitor the heartbeat of
D. melanogaster in vivo and in real time [10–12, 22, 23].
High resolution cross-sectional images of Drosophila's heart
can be obtained by OCM for heart function analysis [23]. In
the meantime, automatic and high-throughput analysis is
greatly desired due to the large number of specimens needed
for each experiment. However, with traditional methods it is
challenging to accurately and efficiently segment fly heart
from OCM images. The shape of heart and the contrast of
boundary vary over different developmental stages and each
cardiac cycle. The fly heart chamber images become prob-
lematic especially during diastole cardiac phases, where the
thinned heart wall often seems discontinuous in OCM
images. Furthermore, OCM images are susceptible to
speckle noises, which can cause the algorithm to misidentify
the heart's boundaries [24]. Due to these factors, it is desir-
able to develop a reliable algorithm to segment the fly heart
with high accuracy and efficiency.

Image segmentation has been a crucial problem in bio-
medical imaging studies. Some traditional machine learning
algorithms have been implemented for this purpose, includ-
ing k-means [25], random forest [26, 27], support vector
machine [28–30] and conditional random fields [31, 32]. Yet
the accuracy and universality of these algorithms are still not
satisfying. However, with the advent and progress of deep
learning methods, universal and powerful image classifica-
tion or segmentation models can be built with proper model
setup and training. LeCun et al [33] proposed a convolu-
tional neural network (CNN) structure for document recogni-
tion which was followed by a successful realization by
Krizhevsky et al [34]. Since then, with the help of high per-
formance graphics processing unit (GPU) computing tech-
nique, deep learning and CNNs have become increasingly
prevalent. New setups of techniques and model structures
have been developed to further enhance the performance of
CNNs [35–38].

Semantic segmentation is one of the rapidly developing
fields, which has benefited from the development of deep
learning. Long et al [39] proposed a fully convolutional net-
work (FCN) to accomplish semantic segmentation based on
neural networks. The FCN network uses standard convolu-
tional layers for feature extraction but substitute the last fully
connected layers with a convolutional layer to generate
pixel-wise prediction and perform segmentation. After this
study, many new segmentation network structures emerged.
Instead of substituting the last fully connected layers, these
new structures utilize an encoder-decoder system to perform
convolution and deconvolution, and the encoder-decoder
structure becomes the main structure for different semantic
segmentation algorithms [40–45]. These neural network-
based semantic segmentation systems outperform the tradi-
tional methods in both high accuracy and speed. In this
paper, we seek to implement an encoder-decoder deep
learning model to perform semantic segmentation on
OCM Drosophila heart images to segment the heart region
automatically.

2 | METHODS

2.1 | Datasets and training strategy

Drosophila OCM images acquired in previous studies [11,
12, 23] were prepared for training and testing. The OCM
system setup is shown in Figure 1. OCM images were
obtained using a supercontinuum light source from Fianium
with a central wavelength of ~800 nm and a bandwidth of
~220 nm, and a 2048 pixel line scan camera operating at
20 k A-scans/s. A rod mirror is used to split the light into a
sample arm and a reference arm. The sample arm power of
the system is ~5 mW and the sensitivity of the system was
measured to be ~95 dB. The OCM system has an axial reso-
lution of ~1.5 um, and a transverse resolution of ~3.9 um.
For training and testing purpose, time-lapse OCM

images of 90 distinct Drosophila were masked and used.

FIGURE 1 OCM system setup. The system uses a supercontinuum light source. A rod mirror is used to split the light into sample arm and reference arm.
The back-reflected light is collected by the spectrometer to generate OCM fringes
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Flies in different development stages were included to train
the model. Larva, pupa and adult flies were selected for the
training. Each OCM dataset contained 4000 frames of 2D
fly heart images which were continuously taken in 30 sec-
onds intervals to record the dynamic heart area. In order to
increase the data variation and prevent overfitting, 100 to
500 image frames were selected out of each dataset. The
selection of the images covers different shapes and sizes of
the fly heart. Ground truths of all the OCM images were
marked manually to indicate the region of the heart. The
ground truth image is a binary image, where “1” represents
the heart area and “0” represents other areas.

Data augmentation was implemented to improve the per-
formance of the model. For each input image, operations
include shifting and rotation was applied to generate addi-
tional input images, meanwhile same operation was applied
on the ground truth to generate corresponding ground truth.
Random shifting toward all four directions from 10 to
50 pixels were used, and rotation of 90, 180 and 270 were
also used. In total, eight more augmented image ground truth
pairs were generated based on one single original input
image and ground truth. The augmented data were trained
together with the original data. This operation would make
full usage of the data. And operations like shifting would
train the model with cases where the heart is not strictly in
the center of the image. Data augmentation helps to train the
model with different kinds of input images in order to
increase the versatility of the model.

A total of 25 000 raw images before augmentation with
ground truths were grouped into training, validation and test-
ing data. In order to further examine the performance of the
model, and make fully usage of the limited amount of data, a
10-fold cross-validation analysis was performed. In each
round of the cross-validation, different validation and testing
data were selected, and the model was trained on the rest of
the data. Each round the model was trained from scratch to
prevent over fitting.

The data selection in each round followed two rules. First,
the data were grouped by dataset: images from the same data-
set (from the same fly) were only used in training, validation
or testing. Second, the selection of data in training, validation
and testing covered all the developmental stages. In the begin-
ning of each training round, ~1000 images from three datasets
of larva, pupa and adult flies were selected to be used as test-
ing data, and under the same rule ~1000 images were selected
to be used as the validation data. The rest ~23 000 raw
images were used as the training data, and after augmentation
~184 000 images were used for training in each round.

During the training procedure, the validation data were
used to supervise the training process and the prediction
accuracy on validation data were used as the trigger for early
stopping mechanism. After the training was done, the model
was tested using only the testing data. The usage of both val-
idation data and testing data was to prevent the issue of over

fitting caused by early stopping triggering mechanism. After
each round of training, testing was made to generate an
accuracy score in terms of intersection over union (IOU).
After all the 10 rounds, an average IOU score can be calcu-
lated to evaluate the performance of the model.

2.2 | Network structure

The neural network structure of our model is shown in
Figure 2. The model's structure design was adopted from the
U-Net design [42], and was built using Keras with Tensor-
flow backend. Figure 2A shows the structure of the neural
network model. In the figure, the plates indicate the feature
maps, and the numbers of feature maps are labeled. Each
color arrow indicates a group of convolutional layers. In
total, there are five convolution groups constructing the
encoder, and four deconvolution groups constructing the
decoder. Image of size 128 × 128 would be the input and

FIGURE 2 (A). Structure of the neural network. The feature maps are
shown in green plates, with numbers by the plates indicating the number of
feature maps, and the operations on feature maps are shown by colored
arrows. The network consists of five convolution groups as the encoder and
four deconvolution groups as the decoder. The concatenate operation is also
labeled in the graph by slim black arrows. (B).Training procedure schemes.
The OCM image will be input to the model and prediction of the model will
be generated (shown in blue), after that manually marked ground truth
(shown in red) will be introduced and compute loss function. Then, the loss
will back propagate into the model to update the weights using Adam's
method. (C).Test procedure schemes. For testing OCM images will go into
the model and predictions (shown in blue) will be generated for future
analysis. No back propagation will be made in the test procedure
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then a pixel-based segmentation output of the same size
would be generated. For the encoder component, each group
contains two convolutional layers, and each of the first four
groups also has a 2 × 2 max pooling layer. For the decoder
component, each group contains one transpose convolutional
(or deconvolutional) layer to double the feature dimensions
and halve the feature channels. Each group also contains two
standard convolutional layers. In addition, in each decoder
group, there is one concatenate operation shown by the slim
black arrow. This operation will concatenate the deconvolu-
tional feature map with a corresponding encoder feature map.
This will increase the veracity of the model and reduces infor-
mation loss. For all the convolutional layers except the last
one, we use a kernel size of 3 × 3 and a stride factor of
1, and Rectified linear unit are used as activation function for
all these layers. For the last layer, an 1 × 1 convolutional
layer was used with sigmoid activation function to generate
the predictions of being heart region for each pixel.

Adam method [46] is implemented as the optimization
algorithm of the model. In addition, IOU is used as the accu-
racy metric to evaluate the performance of the model. IOU
indicates the similarity between the ground truth and the pre-
dicted result, which is defined as:

IOU=
Predicted Result\Ground Truth
Predicted Result[Ground Truth : ð1Þ

A differentiable soft IOU score [47] is used as the loss
function in the model. The output of the network would be
differentiable instead of a standard binary output, and thus
enables the back propagation inside the network to update
the weights and biases. For convenience reasons, the model
will also be referred as FlyNet in this paper.

2.3 | Training and testing

The training procedure is shown in Figure 2B. OCM Dro-
sophila heart images in the training dataset were shuffled
and then sent into the model as the input. The model then
generated an output image of the segmentation result. After
that the predicted segmentation (shown in blue) was com-
pared with the ground truth image (shown in red), and loss
was calculated and back propagated to update the weights
and biases. This procedure was performed over many epochs
until an early stopping mechanism based on validation data
was triggered to prevent overfitting.

Testing procedure scheme is shown in Figure 2C. After
the training procedure was over, a trained model was
obtained. For the testing procedure, the OCM images in test-
ing group were input to the model, and the output segmenta-
tion results were generated as shown in blue color. The
ground truths for the testing images were compared with the
output results to evaluate the performance afterward. Note
that the ground truth of the testing result here only served
for evaluation for the output results, and did not interact with

the model. Once the model was well trained, it is then used
to segment the fly heart region from input OCM images.

3 | RESULTS

3.1 | Prediction results from the neural network

The model was trained on a single NVDIA Geforce GTX
1080 GPU with 8 GB memory. Each epoch in the training
took about 380 seconds and each round of training session
stopped after about 25 epochs, when the validation results
became stable and triggered the early stopping mechanism.
For all the 10 rounds of training, an average IOU of ~86%
was achieved. The averaged IOU is a result from testing in
the 10 rounds, and has a fluctuation within 5%.
Examples of ground truth and segmentation results on

larva, pupa and adult fly hearts are shown in Figure 3.
Figure 3(A,D,G) shows original Drosophila heart OCM
images as the input for the neural network. Figure 3(B,E,H)
shows the ground truth in red color on the original OCM
images. Figure 3(C,F,I) shows the prediction output from the
model in blue color on the OCM images. Different features
in the images are labeled in (A), (D), (G). In larva image
(A), there are tracheae (tr) on both side of the heart, while
the line on the top is the cover glass/fly skin surface (cg),
and the cover glass reflection artifacts (arti) are also shown

FIGURE 3 OCM heart image of larva (A-C), pupa (D-F) and adult (G-I)
flies. (A, D, G) Original OCM images fly heart. Different features in the
images are labeled in (A, D, G). The abbreviations in (A) are: tr—tracheae,
cg—cover glass/larva skin surface, arti—cover glass reflection artifacts. The
abbreviation in (B): fat—fat body. (B, E, H) Examples of ground truth
labeled in red color. (C, F, I) The corresponding testing segmentation results
output from the trained model labeled by blue color. In supporting
information, Video S1 shows segmentation result for larva flies, Video
S2 shows segmentation result for pupa flies and Video S3 shows
segmentation result for adult flies

4 of 9 DUAN ET AL.



in the image. In pupa and adult flies, the skin of the fly is
above the heart, and there are fat tissue surrounding the heart
region. In addition, videos of the masks of prediction and
comparison with ground truths are available in the Videos
S1–S3, Supporting Information. The Videos S1–S3 contain
segmentation results for larva, pupa and adult flies, respec-
tively (see Videos S1, S2, S3). And the heart's beating pat-
terns with time are shown. As can be seen, the predictions of
the model are accurate and greatly resemble the shape and
position of the ground truths, and the model gives accurate
prediction of the heart region regardless of cardiac cycle
stages or developmental stages.

3.2 | Heart functional analysis

In order to quantify the performance of the FlyNet model,
and compare the performance between different develop-
ment stages, heart area, heart diameter and IOU data at each
frame during the testing procedure were calculated. IOU is
used as a key metric to examine accuracy of the model.
Comparisons between ground truth and model prediction are
plotted vs time (eg, correspond to different cross-sectional
image frames). Three example larva, pupa and adult fly test-
ing datasets are picked and the heart area, heart diameter and
IOU plots are shown in Figure 4(A,C,D), respectively. Areas
marked manually as the ground truth and generated by the
model are plotted in blue and orange colors, respectively.
The IOU curves of each OCM frame of the same period are
plotted in green. As shown in the plots, the Drosophila's
heart rate (HR) changes in different developmental stages, as

shown in our previous studies [11, 12, 23]. Besides, the area
curve generated by the model greatly resembles that gener-
ated by the ground truth, and the fly heartbeat can be accu-
rately recorded. The model gives high IOU at all three
different developmental stages. There are mismatches in the
larva example dataset in Figure 4A, and the circled example
region is enlarged and plotted in Figure 4B. These mis-
matches are caused by human errors and are further discussed
in Section 4. Note that for adult flies, there are dips in the
IOU curve, and dotted lines are plotted to indicate the periodi-
cal trend of the prediction failure in coordinate with the heart
phase change. At end diastole phases and end systole phases,
there are notable accuracy drops, and scores for end systole
phases are lower because smaller total area causes smaller
denominators in the IOU equation. However, even at these
points, the IOU is still over 75%. Further discussion on the
prediction failure causes is in Section 4. Overall, the FlyNet
model has shown good accuracy to perform the segmentation
task on flies at all the developmental stages. The plots gener-
ated by neural networks exhibit clear indication of the heart
beat dynamics, and numerical data and parameters can be
quantified to characterize fly heart function.
To characterize the Drosophila heart based on OCM, it

is important to analyze certain functional parameters, such as
end diastolic diameter (EDD) indicating the diameter during
the heart dilation, end systolic diameter (ESD) indicating the
diameter during heart contraction, fraction shortening
(FS) indicating the diastolic diameter lost in systole and HR
[8, 9]. These parameters can be calculated based on the out-
put of the neural network. Figure 5 shows the results

FIGURE 4 Heart area plots, heart diameter plots and IOU plots vs time for (A) Larva (C) pupa and (D) adult flies. (B) An enlarged plot of one mismatch
shown in (A). The orange plots are generated from predictions of the model, and the blue plots are generated from ground truth data. The IOU curves are
shown in green. Dotted lines in (D) are shown to align changes in heart area and diameter with fluctuations in IOU
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generated from the output of neural network, and compared
with manual labeling results. The testing results from the
10-fold cross-validation were used and analyzed. In each
round, the testing data contained dataset from each develop-
mental stage; therefore, overall 10 samples each from larva,
pupa and adult stage were analyzed to generate the func-
tional parameters. Figure 5 shows the comparison results
between manually labeling and model predictions for ESD
(A), EDD (B), FS (C) and HR(D). In each of the four fig-
ures, the respective parameters calculated by both manually
labeling and model prediction are shown in purple and
orange, respectively. To enhance generality, for each figure,
three groups of comparisons are shown indicating results for
larva, pupa and adult developmental stages. Each bar in the
figure represents the averaged result, and the error bar indi-
cates the SD, which shows variations of fly heart functional
parameters within each group. Figure 5 shows that the model
gives accurate measurements over parameters like EDD,
ESD, FS and HR. The results show that the model is able to
generate reliable data and reliably quantified parameters like
EDD, ESD, etc. These results prove that the neural network
model is a suitable and reliable tool for the Drosophila heart
functional analysis.

4 | DISCUSSIONS

The CNN exhibits accuracy and stability to segment the
heart of Drosophila in different developmental stages from
OCM images. Our FlyNet model shows high extent of reli-
ability in predicting fly heart region in diastolic, systolic
phases and in different developmental stages. Although in

the OCM images, there are discontinuity and noise, the deep
learning model can still achieve high accuracy. In addition,
based on segmentation of the fly hearts, functional parame-
ters, such as EDD, ESD, FS and HR can be calculated with
high accuracy and reliability, and match well with manual
labeling and calculations.
As shown in Section 3 and Figure 4, high IOU scores are

achieved for most larva and pupa flies. In the meantime, the
model's performance for some frames, especially adult fly
images can be further improved. The absorption of the adult
fly cuticle is high, and as a result, the adult fly images usu-
ally have lower sensitivity and sometimes the heart wall
becomes less visible. In order to further examine the failure
cases, examples of adult fly heart segmentation results are

FIGURE 5 (A) ESD, (B) EDD, (C) FS and (D) HR calculated from ground truth and prediction from the model on larva, pupa and adult flies

FIGURE 6 Segmentation error examples on an adult fly at diastole phase
and systole phase. (A, D) Original image, (B, E) ground truth and (C, F)
testing image of the OCM fly heart image. The arrow in (A) and
(D) indicates the part where the boundary is blurry
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shown in Figure 6. Figure 6A-C shows the segmentation
result for the heart in diastole phase, while Figure 6D-F
shows the result for systole phase. In both the original OCM
images, some part of the heart boundary is blurry and has
low contrast. Figure 6(B,E) shows the ground truth of the
image, and Figure 6(C,F) shows the prediction on the image.
As can be seen from Figure 6(C,F), due to the discontinuity
of the boundary, the prediction result shown in blue has
leakage on the left part of the heart, therefore causing errors
in segmentation and a low IOU score. The cases shown in
Figure 6 are examples of the prediction error, and many low
IOU frame cases share the similar issue. Note that the error
case only happens to some of the low contrast images, the
well-trained model can still predict accurately on many
frames regardless of the vague boundary. Overall, the dis-
continued heart boundary in OCM images is one important
factor that causes the prediction failure. In order to further
enhance the performance and reduce segmentation errors,
one obvious way is to improve from the data side: taking
images with higher sensitivity OCM system to improve the
image quality. On the other hand, increased the number of
training datasets could also help improve the segmentation
accuracy.

For the current model, we are using images with
128 pixels in width, because the database we have from our
previous research [11, 12, 23] utilized fly heart images with
128 pixels in width. Potentially, images with a larger pixel
size could be used to have more information, therefore
enhance the accuracy of the prediction. For the work shown
in this paper, however, we tried to utilize the database as is,
and optimized the model to work with the current imaging
setup and methods.

Another issue related to the segmentation is human error.
The ground truth datasets were marked by four people man-
ually. There are inevitable slight differences between the
datasets and even within the same dataset. For example, in
Figure 4(A,B), the ground truth plot has fluctuations due to
variations of manual human masking of individual OCM
frames. In comparison, well-trained FlyNet model can con-
sistently segment the fly heart from consecutive OCM
frames and generate a smoother prediction line as shown in
Figure 4(A,B).

As for the model structure, we have constructed a CNN
model that can be effectively trained and perform segmenta-
tion on OCM fly heart images. In order to show the high
accuracy of the model and its performance, a comparison
between our FlyNet model and the FCN model is made. A
standard FCN-32s network [39] is built. The network con-
tains one bilinear up-sampling layer as the decoder part. The
network is trained under the same condition as our network,
and achieved an average IOU score of ~65%. One training
comparison example is shown in Figure 7. In the comparison
example, both models are trained and validated with the
same datasets. As can be seen from the figure, our FlyNet

model exhibits much higher IOU score and faster training
speed comparing to the standard FCN network. The key rea-
son is the decoder part of our model is designed to preserve
more features to the end of the network, while the FCN net-
work only uses limited structure in the decoder, and loses
much information in the up-sampling procedure.
Another key technique to enhance the performance of

the model is data augmentation. Due to the limited number
of OCM images, it is important to make full usage of every
image for training. The data augmentation enables the model
to learn with different scenarios based on the limited images.
Moreover, data augmentation prevents the model from
biased predictions toward center position of the heart tube.
After data augmentation, especially shifting, the model could
learn to recognize the heart at other positions, and based
more on the structural information, rather than the absolute
position of the heart.
During the training process, we seek to build a model

that can effectively differentiate the fly heart from other
organs in OCM images. To make full usage of the features
outside of the heart, we use OCM images containing regions
with heart and other tissues, and trained a model that is capa-
ble of segmenting the heart from other organs. The other
way to maintain universality is to train the three develop-
mental stages together. As the fly heart images differ even
within the same developmental stage, it is helpful to train the
model with as much diversity as possible. The combined
training strategy would help enhance the model's
performance.
In this paper, we present a model that utilized the 2D

input images. It is relatively easy to train, and generates
accurate predictions efficiently. However, the fly heart OCM
data is time-lapse 3D data, and the information from sequen-
tial images is not used in our current model. The accuracy of

FIGURE 7 IOU score achieved for validation data vs epoch number
during training. The blue line indicates the result obtained by a FCN-32s
network, and the orange line indicates our FlyNet model's result
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the segmentation could be further enhanced if sequential
images in the third dimension (time) are used. One possible
improvement method is to construct a recurrent neural net-
work (RNN) [48] or long short-term memory (LSTM) [49]
model. An RNN or LSTM model takes sequential data into
account, and has good result for jobs like image captioning
[50]. For semantic segmentation, there is still space for
improvement on accuracy and speed. Potentially, the LSTM
structure could be a solution to real-time segmentation of fly
heart images.

Time required to train the neural network model depends
on the size of the image, and the overall size of the data. For
our cases it took 3 to 4 hours to finish the training on a desk-
top with a single GPU. The time is relatively short, so that
we can build a well performed model quickly. However,
once well trained, the model is ready to be applied on testing
data. It took only ~20 seconds to finish the segmentation for
a dataset containing 4096 images. The advantage of deep
learning and neural networks enables the model to be effi-
cient in prediction, and at the same time applicable to input
images from different fly developmental stages. Based on
the well-trained model, it is possible to build a throughput
tool for heart functional analysis over OCM Drosophila
images.

5 | CONCLUSIONS

In summary, we utilized a convolutional neural network
model to perform semantic segmentation on OCM fly heart
images. An encoder-decoder structure was developed and
trained to accurately and efficiently segment Drosophila
heart regions from OCM image datasets. Based on the
model, a pixel-wise prediction can be made and masks of
the heart can be generated with an average IOU of ~86%.
Furthermore, physiological parameters of the fly heartbeat,
such as EDD, ESD, FS and HR, can be accurately quantified
to characterize Drosophila heart function.
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Video S1 Video of the segmentation result for OCM larva
heart images
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heart images

Video S3 Video of the segmentation result for OCM adult
heart images
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