
Diffuse optical correlation tomography
of cerebral blood flow during cortical

spreading depression in rat brain

Chao Zhou1, Guoqiang Yu1, Daisuke Furuya2, Joel H. Greenberg2,
Arjun G. Yodh1, Turgut Durduran1

1Department of Physics and Astronomy, 2Cerebrovascular Research Center, Department of
Neurology, University of Pennsylvania, Philadelphia, PA, 19104

chaozhou@alumni.upenn.edu

Abstract: Diffuse optical correlation methods were adapted for three-
dimensional (3D) tomography of cerebral blood flow (CBF) in small animal
models. The image reconstruction was optimized using a noise model for
diffuse correlation tomography which enabled better data selection and
regularization. The tomographic approach was demonstrated with simulated
data and during in-vivo cortical spreading depression (CSD) in rat brain.
Three-dimensional images of CBF were obtained through intact skull in
tissues deep (∼ 4 mm) below the skull surface.
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1. Introduction

Normal brain function depends on delivery of oxygen and glucose, and on clearance of the
by-products of metabolism. Thus, an understanding of the normal and pathologic conditions of
oxygen supply and consumption, and measurement of blood flow is important for clinical ap-
plications [1]. To this end a variety of tools have been developed to image cerebral blood flow,
but all of these techniques have limitations. For example, PET-based [2] and MRI-based [3–5]
cerebral blood flow measurements are expensive and sometimes lack the spatio-temporal res-
olution important for animal studies. Laser speckle imaging [6–9] and scanning laser-Doppler
flowmetry [10] have high spatial resolution, but are limited to two-dimensional (2D) mapping
of cerebral blood flow and require the skull to be removed or thinned during the study.

The focus of this paper is the diffuse optical method. Diffuse optical imaging and spec-
troscopy is a growing subfield of biomedical optics whose aim is to investigate physiology mil-
limeters to centimeters below the tissue surface [11–15]. Thus far diffuse optical methods have
been used in research and clinical settings for measurement of blood volume, blood oxygen sat-
uration [16–29], and, to a lesser extent, blood flow [28–34]. The basics of diffuse correlation to-
mography (DCT) have already been developed and tested in phantom studies [35–37], and two-
dimensional image slices have been obtained below the tissue surface in a three-dimensional
(3D) rat brain ischemia model [28]. However, to our knowledge, 3D in-vivo images of dynamic
changes in cerebral blood flow using the diffuse correlation method have not been demon-
strated.

The principle of diffuse correlation tomography is similar to that of diffuse optical tomog-
raphy (DOT), which is well established for mapping three-dimensional tissue optical proper-
ties [11, 14]. However, in practice, blood flow imaging using DCT is harder to obtain due to its
sensitivity to measurement noise and data selection. In this contribution we describe an analy-
sis to optimize data selection and image reconstruction for DCT, and we use this optimization
scheme to derive 3D tomographic images of flow dynamics from an in-vivo model of corti-
cal spreading depression (CSD). CSD is a wave of excitation and depolarization of neuronal
cells that spreads radially with a speed of 2-5 mm/min over the cerebral cortex [38]. It leads
to temporary loss of specific cell function and is involved in some clinical disorders, includ-
ing migraine, cerebrovascular disease, head injury and transient global amnesia. Its mechanism
and physiology have recently been reviewed by Gorji [39] and Somjen [40]. Cortical spreading
depression is also accompanied by robust blood flow changes [9, 10], making it a good model
for testing the feasibility of diffuse optical imaging of blood flow.

The paper is structured as follows. In Section 2, we describe the basic theory of diffuse corre-
lation spectroscopy (DCS) and the image reconstruction algorithm we use for three-dimensional
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tomography of blood flow. In Section 3, we introduce a noise model for the DCS measurements
and test its validity with experiment (readers not interested in the noise model can skip this sec-
tion without loss of continuity). After we show explicitly how an optimal data set and regular-
ization parameters can be obtained (Section 4), computer simulated data is generated and used
to determine optimal parameters for the image reconstruction (Section 5). Our findings are then
employed to reconstruct three dimensional (3D) in-vivo images of relative cerebral blood flow
(rCBF) in a rat brain CSD model (Section 6). A discussion of the results follows these sections.

2. DCS theory and Image reconstruction method

In the near infrared wavelength range (∼ 650-950 nm range), the propagation of the unnormal-
ized electric field temporal auto-correlation function, G1(r,τ ) = 〈E(r, t)E∗(r, t + τ )〉t , inside
tissue can be accurately described using a diffusion equation [37]:

∇ · (D∇ G1(r,τ ))−
(

vµa +
1
3

vµ ′
sk

2
0α 〈∆r2(τ )〉

)
G1(r,τ ) = −vSδ3(r− rs). (1)

Here, E(r, t) is the electric field at position r and time t, ∗ denotes complex conjugate, τ is the
correlation delay time and 〈 〉t denotes time average. µa and µ ′

s are the absorption and reduced
scattering coefficients of the tissue respectively, v is the light speed in the media, D ∼= v/3µ ′

s is
the light diffusion constant, k0 is the optical wave-vector, α is the percentage of light scattering
events from moving scatterers (e.g., blood cells), 〈∆r2(τ )〉 is the mean-square displacement
of the moving scatters in time τ , and Sδ3(r− rs) is the point source term located at rs. This
differential equation approach [37] is formally equivalent to the original integral formulation
(termed diffusing-wave spectroscopy [41, 42]), but is particulary attractive for investigation of
heterogeneous media [35–37]. Its solution in the semi-infinite homogeneous geometry is [43],

G1(r,τ ) =
vSe−K(τ )r1

4πDr1
− vSe−K(τ )r2

4πDr2
, (2)

where K2(τ ) = 3µaµ ′
s + µ ′2

s k2
0α 〈∆r2(τ )〉, r1 = |r− rs + ztrn̂|, r2 = |r− rs − (ztr + 2zb)n̂|, n̂ is

the unit normal to the boundary pointing away from the turbid medium, ztr = 1/µ ′
s is the dis-

tance into the media where the collimated source is considered isotropic, zb is the extrapolation
distance from the sample boundary as determined by the mismatch in the indices of refraction;
here we use zb = 2/3µ ′

s to be consistent with literature [44]. For the important case of random
ballistic flow in the tissue vasculature, 〈∆r2(τ )〉 = V 2τ 2. Here V 2 is the second moment of the
cell velocity distribution. For the case of diffusive motion, 〈∆r2(τ )〉 = 6Dbτ , where Db is an
effective diffusion coefficient of the moving scatterers. Generally, we have found that both of
these models fit our in-vivo data [30], but the latter model often provides better quality fits. Fur-
thermore, we have found that relative changes in α Db correspond quite well to relative changes
in blood flow measured by other techniques [31, 32, 45–47].

In experiments, the temporal field auto-correlation function is not measured directly. Instead,
the intensity fluctuations within a single speckle area are detected using a single mode fiber and
a photon counting detector. A custom made correlator board then uses the output from the
detector to calculate the temporal intensity auto-correlation functions of the scattered light,
g2(r,τ ) = 〈I(r,0)I(r,τ )〉/〈I(r,0)〉2. The normalized temporal field auto-correlation function
g1(r,τ ) = G1(r,τ )/G1(r,0), in turn, is linked to g2(r,τ ) through the Siegert relation [48]:

g2(r,τ ) = 1+β |g1(r,τ )|2. (3)

β is a parameter that depends on the detection optics and is approximately inversely propor-
tional to the number of speckles within the detection area.
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Diffuse correlation tomography uses DCS measurements from many source-detector
pairs to construct a blood perfusion image. When the dynamic properties of the me-
dia are heterogeneous, the measured auto-correlation functions contain contributions from
all volume elements inside the medium. Within the Rytov approximation [35], we write
g1(rs,rd,τ ) = g1,0(rs,rd,τ ) exp(φs(rs,rd,τ )), where g1,0(rs,rd,τ ) is the contribution of
the homogeneous background, and φs(rs,rd,τ ) accounts for perturbations due to the hetero-
geneities of dynamic and static optical properties. Then, following the procedure of Kak and
Slaney [49], and assuming, for simplicity, that changes in absorption, ∆µa = 0 cm−1, and scatte-
ring, ∆µ ′

s = 0 cm−1, are negligible, we can derive a matrix equation, which relates the measured
perturbations in g1(r,τ ) to the heterogeneous blood flow variations, i.e.

φs(rsi,rdi,τ ) = ln
g1(rsi,rdi,τ )

g1,0(rsi,rdi,τ )
=

N

∑
j=1

Wi j(rsi,rdi,rj,τ )∆(α Db(rj)). (4)

Here N is the number of sample voxels, i is from 1 to M (M is the number of measurements), Wi j

links the flow perturbation in the jth voxel (∆(α Db(rj))) to the ith source-detector measurement
pair (φs(rsi,rdi,τ )). Wi j can be calculated analytically from the correlation propagation model
[35, 37], i.e.

Wi j(rsi,rdi,rj,τ ) = −2vµ ′
sk

2
0τG1(rsi,rj,τ )H(rj,rdi,τ )

DG1(rsi,rdi,τ )
, (5)

here, H(rj,rdi,τ ) is the Green’s function for the homogeneous correlation diffusion equation.
By solving this inverse problem, the spatial distribution of the heterogeneous flow properties,
∆(α Db(r)), can be obtained. Generally, the inverse problem is ill-posed. Therefore, in order to
stabilize the image reconstruction of ∆(α Db(r)), regularization is necessary. We use Tikhonov
regularization [50] as follows:

∆(α Db(r)) = W T (W ·W T +λ · I)−1 ·φs, (6)

where T indicates a transpose. The regularization parameter λ is made spatially variant to
reduce source-detector artifacts at the surface plane, i.e.

λ (z) = λc +λe · (e(z−zmax)/zmax −1), (7)

where z is the depth of each voxel, zmax is the maximum depth in the reconstruction geometry,
λe = 10λc is chosen to produce even image noise as a function of depth [51]. The inverse
(W ·W T +λ · I)−1 is obtained by Singular Value Decomposition (SVD). In order to achieve the
best image quality, we carefully have studied the optimization of delay time τ and regularization
parameter λc for the diffuse correlation problem. This is discussed in detail in Section 4.

3. Noise model for DCS

In order to derive meaningful optimization schemes to guide applications of DCT, a proper
estimate of experimental noise must be made. However, in contrast to the problem of diffusive
waves [52–54], which measures light intensity and phase shift variations caused by propagation
of photon fluence rate through tissues, the noise model for correlation experiments is non-
trivial. A noise model suitable for photon correlation measurements was previously developed
for the single scattering limit [55, 57]. Here, we have adapted the noise model developed by
Koppel [57] for fluorescence correlation spectroscopy (FCS) in the single scattering limit and
tested its feasibility in diffuse correlation experiments, wherein photons experience multiple
scattering.
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Fig. 1. Experimental setup used to test the accuracy of the noise model. One source-detector
pair, with a 1 cm separation, is placed into an Intralipid phantom. A long coherence length
laser (∼ 50 m) is provides light to the phantom. In order to test the noise-model under
different signal-to-noise ratio conditions, the input power is adjusted manually using an
optical attenuator connected to the input fiber. The light is detected by a photon counting
APD the output of which is fed into a correlator board to calculate the normalized intensity
auto-correlation function g2(τ ). g2(τ ) is then collected and saved in a desktop computer.
A hundred g2(τ ) curves are measured under the same conditions. The measurement noise,
plotted in Fig. 2(a), is calculated as the standard deviation of the fluctuation at each delay
time τ .

In a typical DCS experiment, the normalized field auto-correlation function decays approx-
imately exponentially, i.e. g1(τ ) = exp(−Γτ ) [56]. The experiment and experimental configu-
ration is characterized by the decay rate Γ, the correlator bin time interval T , the bin index m
corresponding to the delay time τ , the average number of photons 〈n〉 within bin time T (i.e.
〈n〉= IT , where I is the detected photon count rate), the total averaging time t and the parameter
β as described in Section 2. Following the steps in reference [57] (see Appendix), the standard
deviation (σ(τ ), noise) of the measured correlation function (g2(τ )−1) at each delay time (τ )
is estimated to be

σ(τ ) =

√
T
t
[β2 (1+ e−2ΓT )(1+ e−2Γτ )+2m(1− e−2ΓT )e−2Γτ

(1− e−2ΓT )

+ 2〈n〉−1β(1+ e−2Γτ )+ 〈n〉−2(1+βe−Γτ )]1/2. (8)

We designed a simple experiment to test the accuracy of this noise model (Fig. 1). A single
source-detector pair, separated by 1 cm, is placed into an Intralipid phantom. A long coherence
length (∼ 50 m) laser provides light to the phantom. The input power is then adjusted manu-
ally using an optical attenuator in order to test the noise-model under different signal-to-noise
ratio (SNR) conditions. The light was detected by a photon counting avalanche photo-diode
(APD) whose output was fed into a correlator board to calculate the normalized intensity auto-
correlation function g2(τ ). The instrument is described in further detail in Section 6.

One hundred DCS curves were collected for each input power, and the standard deviation
of the fluctuations at each τ was calculated and plotted (dots in Fig. 2(a)). The solid lines
in Fig. 2(a) are the calculated noise using equation 8 with all the input parameters obtained
from experiments: β was obtained from the intercept of the correlation curve; Γ was obtained
by fitting the experimental data with the exponentially decaying function; the averaging time
t = 1 s was kept constant for all measurements; photon count rates were recorded by the
correlator board; the binning time interval T and bin index m were fixed on the correlator board.
As shown in Fig. 2(a), the measured noise decreases as the delay time τ increases. The “steps”
in the figure are due to the multi-tau arrangement of the correlator [58]. On our correlator board,
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Fig. 2. (a) Comparison of measured noise (dots) and calculated noises using the model
(solid lines). All input parameters for the noise model are obtained from experiments.
Measurement noise decreases as the delay time τ increases. The “steps” are due to the
multi-tau arrangement of our correlator. (b) Signal-to-Noise Ratio (SNR) comparison of the
measured correlation curves and the model predictions. Although the measurement noise
decreases as the delay time τ increases, the SNR of the DCS measurements also decreases
because the “signal” drops even faster as τ increases. (kcps = kilo-counts per second)

the bin time interval is T = 160 ns for the first 32 channels and is doubled every 16 channels
thereafter. Figure 2(a) shows that noise drops when the detected light intensity increases, as
expected from equation 8. On the timescales of interest (τ ∈ {10−6 s, 10−3 s}), the noise model
provides a good estimate of the measurement noise in DCS, although it slightly overestimates
the noise at large τ when the photon count rate is high. The failure of the noise model at large
delay time has also been observed in FCS studies [59, 60].

Figure 2(b) shows the signal-to-noise ratio (SNR) of the measured correlation curves,
SNR = (g2(τ )− 1)/σ(τ ), at different light intensities. In Fig. 2(a) we see that the DCS
measurement noise decreases as the delay time τ increases. However, the “signal” drops even
faster as τ increases. As a result, the signal-to-noise ratio of the DCS measurement still de-
creases as the delay time increases. The signal-to-noise ratio can be improved by increasing
the light intensity collected by the detector, as well as increasing the averaging time t (data not
shown), but the SNR curves will have same general form.

After studying the noise in (g2(τ )−1), we have developed a technique to estimate the noise
in the perturbation φs(rsi,rdi,τ ) for our image optimization. The noise of φs can be derived from
the relations in equations 3, 4 and 8 as:

σφs(rsi,rdi,τ ) =
1
2

σ(rsi,rdi,τ )
(g2(rsi,rdi,τ )−1)

=
1
2

1
SNR

. (9)

This results in a perturbation noise that is higher at large delay time τ . We will use equation 9
in the following section to derive the upper limit of the normalized image noise.

4. Optimization Criteria

In this section we describe in detail how to optimize data selection for the image reconstruction
and how to choose the optimal regularization parameter to reduce image artifacts.

4.1. Choosing the optimal data set

Generally, we collect the entire correlation curve for each DCS measurement, which has
∼ 200 data points, each corresponding to a different delay time, τ . DCT uses DCS measure-
ments at different source-detector pairs; usually one data point from each correlation curve
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Fig. 3. Example of the field auto-correlation function g1(τ ). Points corresponding to dif-
ferent values of n are notated. n is defined as the point where g1(τ ) decreases to exp(−n)
of its initial value (i.e. we write g1(τ ) = exp(−n)g1(0)).

is picked for the image reconstruction. Here, we introduce a parameter n, which defines the
point where the field auto-correlation function decreases to exp(−n) of its initial value, i.e.
g1(τ ) = exp(−n)g1(0) (shown in Fig. 3). From Eq. (2), it is easy to show that τ and n have the
following relationship,

τ =
1

µ ′2
s k2

0α Db
(

n2

|rs − rd|2 − 2n
√

3µaµ ′
s

|rs − rd| ). (10)

For each n, the delay time τ is calculated using the above formula for each source-detector
pair, and is used to calculate the elements in the weight matrix W . The condition number of W
(i.e. Nc = ϕmax/ϕmin, where ϕmax is the largest singular value of W and ϕmin is the smallest) is
often used to characterize the weight matrix. The larger the condition number, the bigger the
error amplification after the system is inverted. It can be shown that [61],

‖σ∆(α Db)‖
‖∆(α Db)‖ ≤ ‖σφs‖

‖φs‖ ·Nc, (11)

where ‖ ‖ denotes the two-norm of a vector, i.e. ‖φs‖ =
√

∑i φ2
si. The upper limit of the nor-

malized image noise (‖σ∆(α Db)‖/‖∆(α Db)‖) can be estimated by computing the product of the
normalized measurement noise (‖σφs‖/‖φs‖) and the condition number of the weight matrix
(Nc). Therefore, by calculating the upper limit of the normalized image noise for different n,
the minimal point can be determined and the set of these minimal points defines the optimal
data set for image reconstruction.

4.2. Choosing optimal regularization parameter

The optimization of the regularization parameter λc is achieved by conducting a standard L-
Curve analysis [62]. After a data set is chosen, a perfusion image ∆(α Db(r)) can be recon-
structed with regularization parameter λc. The solution norm η (λc) = ‖∆(α Db(r))‖, which
provides a measure of the fluctuation in the reconstructed images, and the normalized residual
norm, ξ (λc) = ‖W ·∆(α Db(r))−φs‖/‖φs‖, which shows the quality of the data fit, are then
calculated. Generally, we want to minimize both of these values to reduce image fluctuations
and obtain a good fit. If we calculate η (λc) and ξ (λc) for different λc and plot them on the
x- and y-axis, an “L” shape curve will be obtained as shown in Fig. 5. The optimized λc is
obtained at the elbow of the L-curve as the best compromise between improved data fitting and
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Fig. 4. Simulation geometry: (a) A spherical object with a radius of 0.2 cm is placed in
a homogeneous background at three distances from the source/detector plane (0.4 cm,
0.2 cm, 0.4 cm). The dynamic property of the object is 10% lower than the background
(α Db = 0.9× 10−8 cm2/s, α Db0 = 1× 10−8 cm2/s). The static optical properties of the
sphere and background are the same (µa = 0.1 cm−1, µ ′

s = 8 cm−1). (b) 25 sources and
16 detectors are placed at the z = 0 cm plane and cover a region ranging from -0.6 cm to
0.6 cm in both the x and y dimensions. An analytical solution is used for the simulation.
Measurement noise is calculated and added to the simulated data with a normal distribution.
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Fig. 5. Choice of the optimal data set and optimal regularization parameter: (a) The nor-

malized image noise ‖σφs‖
‖φs‖ ·Nc plotted as a function of n. The optimal data set is obtained

at n = 1, where the upper limit of the normalized image noise is a minimum. (b) L-Curves
with noisy data at different n are plotted to identify the optimal regularization parameter λ .
The n = 1 curve is the closest to the origin, which also indicates the advantage of using a
data set with n = 1 for image reconstruction.

reduced image noise (minimizing the norm of the reconstructions). In our study, the curvature
at each point of the L-Curve was calculated, the maximum curvature point was found and was
considered as optimal.

5. Simulation Results

In this section, we use simulated data to compare the image quality using different data sets and
different reconstruction schemes. The simulation geometry is on the same scale as our small
animal models. Thus our conclusions can be directly used to improve image quality for our
in-vivo small animal studies.

As shown in Fig. 4, a spherical object with radius of 0.2 cm, whose center is located at
(0.4 cm, 0.2 cm, 0.4 cm), sits in a homogeneous background. The dynamic property of the ob-
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Fig. 6. Reconstructed images using data with n = 1. Reconstructed 3D images cover the
region (x: -0.8 cm - 0.8 cm, y: -0.8 cm - 0.8 cm, z: 0 cm - 0.8 cm) with 1 mm3 voxels. Im-
ages at every 2 mm along the z direction are shown (from left to right). The depth for each
layer is marked for each column. (a) Simulation (Sim) geometry. (b) Reconstructed im-
ages using data directly from the noisy raw data (Direct Raw-data Reconstruction, DRR).
The object is found at a displaced layer (z=0.6 cm). (c) Images using data from the fit-
ted curve (by minimizing ‖g2m(τ )−g2c(τ )‖) to reconstruct the images (Smoothed Fitting
Reconstruction, SFR). Image artifacts are greatly reduced. (d) Using noise information in

the fitting process (by minimizing ‖ g2m(τ )−g2c(τ )
σ(τ ) ‖) can further improve the image quality

(Noise Fitting Reconstruction, NFR).
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Fig. 7. Quantitative comparison of different image reconstruction schemes: (a) Volume
weighted rCBF for the reconstructed object normalized to the simulation (Sim). Noise Fit-
ting Reconstruction (NFR) gives the most accurate value compared to the simulation. (b)
Distance from the center of the simulation to the center of the reconstructed object. NFR
provides the best location accuracy (∼ 1 mm). (c) Contrast to noise ratio (CNR) of the
reconstructed images. NFR gives the highest CNR over the three reconstruction schemes.

ject is 10% lower than the background (i.e. α Db = 0.9×10−8cm2/s, α Db0 = 1×10−8 cm2/s),
while the static optical properties of the sphere and background are the same (µa = 0.1 cm−1,
µ ′

s = 8 cm−1). Twenty-five sources and 16 detectors are placed in the z = 0 cm plane and cover
a region ranging from -0.6 cm to 0.6 cm in both x and y dimensions. The analytical solution
for a spherical perturbation [35, 54] is used to simulate noise-free measurement data for each
source-detector pair. DCS measurement noise is then calculated based on Eq. (8) and added to
the noise free data with a normal distribution.

The noise in φs is estimated using Eq. (9) and
‖σφs‖
‖φs‖ ·Nc at different n, and is plotted in
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Fig.5(a). The optimal data set is found at n = 1, which results from a balance between the
image reconstruction model and the measurement noise. In Fig. 5(b), L-Curves at different
n are plotted to help to choose the optimal regularization parameter λc. The curvature at each
point along the curve is calculated and the maximum curvature point is considered as the turning
point of the L-curve, which is the optimum of λc. Note also that the L-Curve of the n = 1 data
set was the closest to the origin, which also indicates the advantage of using a data set from
n = 1 for image reconstruction.

In Fig. 6, we compare the reconstructed images using data from n = 1 with our simulations.
The reconstructed 3D images cover the region (x: -0.8 cm - 0.8 cm, y: -0.8 cm - 0.8 cm, z: 0 cm -
0.8 cm) with 1 mm3 voxels. For simplicity, images located every 2 mm along the z direction are
shown in the figure (from left to right). The depth for each layer is marked as the title for each
column. Figure 6(a) illustrates the simulation (Sim) geometry and points to the object location
from the images. Figure 6(b) shows reconstructed images using data directly from the noisy raw
data (Direct Raw-data Reconstruction, DRR). The reconstructed object can be seen centered at
a displaced layer (z = 0.6 cm), although many image artifacts are clearly seen in the top layers.
We then smooth the simulation data by fitting it with the semi-infinite solution for the diffusion
equation through the minimization of χ2 = ‖g2m(τ )−g2c(τ )‖, where g2m(τ ) and g2c(τ ) are the
measured and calculated intensity autocorrelation curves respectively, and we use the data from
the fitted curve to reconstruct the images (Fig. 6(c)) (Smoothed Fitting Reconstruction, SFR).
Image artifacts from the top layers are greatly reduced by this smoothing procedure. More-
over, the reconstructed image quality can be further improved if we use the noise information
and fit the data by minimizing χ2 = ‖ g2m(τ )−g2c(τ )

σ(τ ) ‖ (Noise Fitting Reconstruction, NFR). After
weighting the data points at different delay times τ by the correct noise, the latter fitting proce-
dure preserves more information in the raw data, as well as effectively reduces the artifacts in
the images reconstructed with data from the fitted correlation curves (Fig. 6(d)). All the images
in Fig. 6(b), (c), (d) were reconstructed using Eq. (6). The differences are the data used for the
image reconstruction, as described above in detail.

We compare the reconstructed images more quantitatively in Fig. 7. As has been discussed
in the literature [63], the point spread function (PSF) of the diffuse optical imaging techniques
is large, and the reconstructed values are usually underestimated. However, if we calculate the
volume weighted rCBF for the reconstructed object, as shown in Fig. 7(a), the Noise Fitting
Reconstruction (NFR) gives an object very close to the simulation. We also calculate the dis-
tance from the center of the simulation to the center of our reconstructed object (Fig. 7(b)). The
center of the object reconstructed from NFR is displaced only about 1 mm from our simulation
geometry and provides the best location accuracy among all three reconstruction schemes. We
note that the form/parameter of the regularization can affect the location of the reconstructed
object. Here, we have kept both constant throughout. However, a detailed discussion of these
effects is beyond the scope of this paper. In Fig.7(c), we compare the contrast-to-noise ratio
(CNR) of the reconstructed images by calculating the following [64],

CNR =
rCBFROI − rCBFbg

(ωROIσ2
ROI +ωbgσ2

bg)
1/2

. (12)

Here, the region of interest (ROI) is defined as the continuous region where the rCBF change is
more than 1

2 of the maximum change within the reconstructed object. rCBFROI and rCBFbg

are the mean values, σROI and σbg are the fluctuations, ωROI = VROI/(VROI + Vbg) and
ωbg = Vbg/(VROI +Vbg) are the volume weights of the ROI and the background separately.
Images with high contrast-to-noise ratio are better for identifying the region of interest. For the
example shown, NFR, once again, gives the highest CNR of the three reconstruction schemes.
Images obtained using noise information in the fitting/smoothing process provide the best re-
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sult.
We have tried the optimization and reconstruction procedures for different simulation scales,

different optode configurations and different perturbations location and values. The optimiza-
tion results were found to be consistent with the findings reported here. We have also tried
using multiple data points simultaneously from the correlation curve measured at each source-
detector pair for the image reconstruction, but it has not as yet lead to any significant improve-
ment in the image quality.

In summary, from computer simulations we find that the data set from n = 1 is optimal
for the image reconstruction. We also find that use of data from the fitted correlation curves
can improve image quality, and use of noise information in the fitting process gives a better
fit and further improves the image quality. These findings are applicable to cases wherein a
relative image is reconstructed by comparison to a secondary measurement (e.g. a baseline or a
reference sample), and when reconstructing absolute images using numerical solutions from a
homogeneous background as the reference.

6. In-vivo 3D flow imaging of cortical spreading depression on rat brain

A portable, relatively fast (several seconds per frame), large field of view instrument was con-
structed for imaging blood flow changes during cortical spreading depression (CSD) in the
rat [28, 30]. A non-contact probe with a grid-like pattern of source/detector fibers was devel-
oped for this purpose (Fig. 8). The probe was mounted on the film-plane of a regular 35 mm
camera body, which acted as a light sealed, robust box to hold the lens system and probe. The
depth-of-focus of the camera lens reduces the motion artifacts along the optical axis of the
lens. This non-contact probe enabled manipulations to the animal without movement of the
probe, thereby avoiding some common experimental artifacts. Furthermore, crossed-polarizers
(OFR Inc., NJ, USA) were used to reduce surface reflections from the tissue. Light from a
continuous wave, long coherence length laser source (Model TC40, SDL Inc., San Jose, CA,
USA) operating at 800 nm was coupled to the non-contact probe through optical switches (Di-
Con, CA, USA) in order to time-share the source positions. Eight fast, photon-counting APDs
(SPCMAQR-14, Perkin-Elmer, Canada) with low dark current were used in parallel as DCS
detection units. The output of the APDs were fed into a custom built, fast, 9-channel corre-
lator board (Correlator.com, Bridgewater, NJ, USA) to calculate the intensity auto-correlation
function g2(τ ). The whole system was automated and controlled by a desktop computer. Three
source and eight detector positions were used for DCT measurements and a full frame was
acquired every ∼ 6.5 seconds.

Adult male Sprague-Dawley rats weighing 300-325 g were fasted overnight with free access
to water. They were anesthetized with a 1 - 1.5% halothane in a 70% nitrous oxide, 30% oxygen
mixture. Catheters were placed into the femoral artery for monitoring of arterial blood pressure.
Body temperature was maintained at 37±0.5oC by a controlled heating pad. The animals were
tracheotomized, mechanically ventilated, and the head was fixed on a custom stereotaxic frame.
Blood gases were obtained frequently and the respirator was adjusted in order to keep the
blood gases within the normal physiological range. The scalp was retracted to avoid additional
complications due to the fur. A 2 mm burr-hole was made over the frontal cortex of the right
hemisphere leaving the dura intact. CSD was evoked by placing a 1 mm3 filter paper soaked
in 2 mol/L potassium chloride (KCl) onto the dura for the duration of the desired induction
of CSD waves (∼ 30 min). The paper was changed rapidly every 15 minutes. The setup is
illustrated in Fig. 9. After measuring 5 - 10 CSD waves, the KCl was removed and the brain
was washed with saline. A total of six animals were studied and gave similar results, but we
present here reconstructed images from one representative animal.

In order to reconstruct rCBF images during CSD, baseline measurements from each source-
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Fig. 8. System setup for the in-vivo rat brain CSD study. A grid-like pattern of
source/detector fibers (3 sources, 8 detectors) was mounted on the back of a 35 mm camera
body. The light was sent to and detected from the tissues through a relay lens avoiding
contact with the tissue. Light from a CW, long coherence length laser operating at 800 nm
was connected to the non-contact probe through optical switches in order to time-share the
source positions. The output of the APDs was fed into a custom built correlator board which
calculated the intensity auto-correlation function g2(τ ). The whole system was automated
and controlled by a desktop computer and a full frame was acquired every ∼ 6.5 seconds.

KCl placed on brain through 
burr hole

Fig. 9. Cortical Spreading Depresstion (CSD); During experiments, a rat was fixed on a
stereotaxic frame with the scalp retracted and the skull intact. CSD was induced by placing
KCl solution on the rat brain through a small hole drilled on the skull. Periodic activations
and deactivations of the neurons then spread out radially on the cortex as shown on the
sketch.

detector pair were used as references to calculate the perturbations using Eq. (4). Background
optical properties were kept constant as µa = 0.1 cm−1 and µ ′

s = 15 cm−1, while average
α Db = 4.5× 10−8 cm−2/s was calculated from baseline measurements at different source-
detector pairs as the background dynamic property (see Section 7 for the discussion about the
influence of µa, µ ′

s changes during CSD to our image reconstructions). After the weight matrix
W was built, reconstructed flow images were optimized following the descriptions in Sections 4
and 5. Since blood flow changes during CSD were large, reconstructed images using the linear
Rytov approximation usually underestimated flow values, but the position mappings should be
accurate [65]. Thus, we scaled the rCBF images obtained directly from the reconstruction to
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Fig. 10. Reconstructed 3D rCBF images at different layers (from top to bottom) of the
rat brain during CSD. CSD is induced at the top, slightly to the left of the midline
(∼ x = 0 mm). Images (from left to right) are shown about every 20 seconds from im-
mediately before KCl was applied until the end of the first CSD peak. rCBF responses
are mainly localized to the cortex and spread across the cortex tangentially from the point
where KCl was applied. No significant activity is visible in the top panel, which corre-
sponds to the skull, and in the bottom panel, which penetrates below the cortex, indicating
that the activity is localized in the cortex. Images are oriented as shown in Fig. 8(b).

match the bulk rCBF changes obtained from spectroscopy measurements over the matching
brain regions.

Figure 10 shows the reconstructed rCBF images in different layers of the rat brain during
CSD. The burr-hole is located at the top, slightly to the left of the midline (∼ x = 0 mm). Each
panel shown is averaged over 0.5 mm in the depth direction (z) starting with the top of the skull
(z = 0 mm), and at 1 mm, 2 mm and 3 mm from top to bottom, respectively. Images (from
left to right) are shown roughly every 20 seconds from immediately before KCl was applied
(t ≈ 26 s) until the end of the first CSD peak. The panel titles indicate the corresponding
time point in this figure. Along the surface of the cortex (∼ 1 mm deep), a strong increase in
blood flow appears from the top and proceeds to the bottom. It is quite significant that minimal
activity is visible in the top panel (which corresponds mostly to the skull) and in the bottom
panel (which penetrates below the cortex).
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Fig. 11. rCBF changes on the cortex of the rat brain during CSD. Images (from left to right,
from top to bottom) are shown roughly every 20 seconds from immediately before KCl was
applied until the end of the second CSD peak. The panel titles indicate the corresponding
time point. A strong increase in blood flow appears from the top and proceeds to the bottom
of the image. After the peak, there is a sustained decrease in blood flow which covers most
of the image area. Three regions of interest (ROI) were selected and the time series of rCBF
changes from these ROIs are plotted in Fig. 12(a). A movie showing the rCBF changes at
different brain layers during CSD is also provided as supporting media (1.5MB).

The time series images for the layer at 1 mm depth illustrates the spreading of two CSD waves
in the cortex (Fig. 11. A movie showing the rCBF changes at different brain layers during CSD
is also provided as supporting media.). After the first peak, there is a sustained decrease in blood
flow (∼ 3 min) which covers most of the image area. The sustained decrease has been observed
previously [39] and is compatible with inhibition of neuronal activity. Three regions of interest
were selected and the rCBF changes within them are plotted in Fig. 12(a). The propagation of
the CSD waves can be clearly identified from the delay between each curve. Figure 12(b) shows
the dependence of maximal rCBF changes on depth using the data from the second region of
interest (ROI-2) as in Fig. 11. The maximal change occurs at 1 mm (just below the skull) which
corresponds to the surface of the cortex. The peak spreads ∼ 0.5 mm above and below the
cortical surface as expected from the broadening due to the diffuse nature of photons. There is
no significant change at the surface (z = 0 mm) and in the deep region (z = 3 mm). Note that
the in-vivo images appear to have less “cross-contamination” across layers at different depths
compared to the simulation results. We believe this effect is real and is due to the localization
of CSD blood flow responses to the thin two-dimensional layer of rat brain cortex. Clearly,
three-dimensional tomographic in-vivo relative blood flow information is revealed.

7. Discussion

The measurement noise of DCS depends on only a few parameters which can be obtained
experimentally, and therefore can be estimated based on the model discussed in Section 3.
Furthermore, the upper limit of the reconstructed image noise in DCT can be estimated using
the DCS noise information at each source-detector pair. This, in turn, can be minimized by
correct selection of the data set for the image reconstruction. We have parameterized the auto-
correlation curve (parameter n, see Section 4, we note here n does not have to be integer)
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Fig. 12. (a) Time series of rCBF changes from three ROIs illustrated in Fig. 11. From these
curves, the propagation of the CSD waves can be clearly identified. (b) Dependence of
maximum rCBF on depth in the second region of interest. The maximal change is localized
at a depth of 1 mm below the skull. This corresponds to the surface of the cortex. The peak
spreads ∼ 0.5 mm above and below the cortical surface as expected from the broadening
due to the diffuse nature of photons (see text). There is no significant change at the surface
(skull) or in deeper regions.

and n = 1, corresponding to g1(τ ) = exp(−1), was found to be the optimal data point for the
image reconstruction. Previously, we reported that the condition number of the weight matrix
decreased as we increase the parameter n [66]. By contrast, the noise model teaches that a data
set derived from small n (e.g. n = 0.25), where the noise in φs is low, does not improve image
quality because the condition number of the weight matrix is large, i.e. the measurement noise
is amplified to intolerable levels when the weight matrix is inverted; however, using a data
set derived from large n, where the condition number is small, does not help either, because
the noise in the Rytov scattered data (φs) is increased in this regime. The interplay of these
two effects is balanced by using a data set from n = 1, i.e. both the condition number and the
measurement noise in φs are optimized. The development of this model was a key theoretical
aspect of the present work.

The noise model enabled us to calculate the theoretical signal-to-noise-ratio (SNR) of the
DCS measurement, i.e. (g2(τ )− 1)/σ(τ ), which in turn provides practical guidelines for ex-
perimental design. In contrast to diffuse optical near-infrared spectroscopy (NIRS) wherein
fiber bundles can be used to increase detection area, diffuse correlation spectroscopy typically
employs single mode fibers with diameters ∼ 6 µm to detect intensity fluctuations within a sin-
gle speckle area. This limits the amount of light that can be collected at large separations (e.g.
> 3 cm) by the flow detectors. (Although it is possible to employ multiple detectors at nearly
the same position to improve signal-to-noise ratio.) As a result, the SNR of the DCS measure-
ment is greatly reduced when the light intensity is low, as demonstrated in Fig. 2(b). Recently,
the use of few-mode fibers for DCS detection have been reported [34]; in this case more light
can be collected from a few speckles. However, the value of β (see Section 2, equation 3) is in-
versely proportional to the number of speckles within the detection area, and so would decrease
by the same amount, and the product β〈n〉 is about the same as if a single-mode fiber was used.
Therefore the noise model suggests that the SNR of the measurement would not improve when
multi-mode/few-mode fibers are used. This observation was confirmed experimentally (data not
shown). Ultimately, in order to increase the signal-to-noise ratio, it is necessary to adjust the
averaging time, the input light power, and/or the number of fibers/detectors working in parallel.

The development of the noise model also proved to be useful in fitting the DCS data. The best
fitting curves are derived when an error can be assigned to each data point from the collected
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DCS curve. By weighting all the data points with the appropriate estimated measurement noise
in the definition of χ2 [67], e.g. χ2 = ‖ g2m(τ )−g2c(τ )

σ(τ ) ‖, each data point from the curve is better
used in the fitting. We have shown that if the estimated noise information is considered, the
reconstructed image quality is thus improved (see Section 5). From a phantom study, we also
observed a smaller standard deviation in fitted α Db when the estimated noise was used in the
fitting (data not shown), especially when the measured DCS curves were noisy. This will be
important when using more complex models to fit spectroscopy data, for example, in brain
measurements where multiple layers should be considered [34, 43, 46].

Finally we examine some of the assumptions used for rCBF diffuse correlation tomography
image reconstructions. One of our assumptions was that the static optical properties (µa, µ ′

s)
do not change during activation. This assumption may be incorrect for in-vivo animal studies.
Kohl et al reported in-vivo dynamic oxygenation and scattering changes during cortical spread-
ing depression [68], for example, and found that the magnitude of the optical property changes
were relatively small (∆HbO2 ∼ +15 µM, ∆Hb ∼ -7 µM and ∆µ ′

s ∼ 1 cm−1). Compared to
the baseline brain optical properties we measured and used in our image reconstruction, these
relative changes in both µa and µ ′

s are less than 7%. To this end, we changed the global optical
properties by the same amount during CSD, and no significant changes in the reconstructed
rCBF images were observed (i.e. changes in the image voxels were less than 10 %). In practice,
it is desirable to carry out frequency domain diffuse optical tomography measurements concur-
rently with the diffuse correlation tomography measurement for in-vivo studies. It will then be
possible to reconstruct absorption and scattering images from DOT first, and use them for cal-
culating DCT Green’s functions, thereby reducing the optical property influence on blood flow
image reconstructions. Furthermore, by combining the DOT and DCT images, it is possible to
image the cerebral metabolism rate of oxygen (CMRO2) in three dimensions [28, 69].

Over the past thirty years, there has been great interest in measuring cerebral blood flow, oxy-
gen consumption and metabolic responses during cortical spreading depression [9, 10, 70–73].
The optical imaging technique we describe in this paper provides reliable three-dimensional
in-vivo images of rCBF during CSD with a relatively fast frame rate (∼ 0.15 Hz) and moder-
ate transverse and depth resolution (∼ 0.5 mm). The relative blood flow changes we observed
during CSD, an initial strong increase followed by a sustained decrease, is consistent with ob-
servations from other techniques such as laser Doppler flowmetry (1D) [70], scanning laser
Doppler imaging [10], and laser speckle imaging (2D) [9]. The strong increase of rCBF is be-
lieved to be coupled to the increase of oxygen consumption [71, 74], which in turn can also
be directly measured using the diffuse optical imaging methods as discussed above. On the
other hand, in addition to its capability for providing three dimensional blood flow images, the
non-invasive nature of our technique is desirable for studying brain activity in-vivo. We have
recently extended this technique for local measurements of rCBF in adult human brain [29] and
it is conceivable to adapt methods developed in this paper for regional imaging of relative blood
flow in a variety of human tissues.

8. Conclusion

In summary, we have demonstrated tomographic three-dimensional relative blood flow images
using diffuse correlation measurements. A noise model for DCS measurements was introduced
and its accuracy in the multiple scattering regime was studied by experiment and simulation.
Optimized data sets and regularization parameters for the image reconstruction were derived,
and the optimal data set was achieved at time-points wherein the field auto-correlation function
g1(τ ) decreases to 1/e of its initial value. Our findings were then employed in the study of the
cortical spreading depression in a rat brain, and three-dimensional in-vivo blood flow images
during CSD were obtained using the diffuse optical correlation tomography technique.
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Appendix

In this section, we briefly outline the derivation of the noise model for DCS measurements as
in Eq. (8) following the steps in [57].

In reality, the measured intensity auto-correlation function Ĝ2(τ ) is calculated as

Ĝ2(τ ) =
1
N

N

∑
i=1

n(iT )n(iT + τ ), (13)

where τ is the delay time, T is the correlator bin time interval, n(iT ) is the number of photon
counts in time iT , N is the total number of the measurements (exposure time t = NT ). Herein,
we will use 〈 〉 to represent the true value of a parameter, and ˆ to denote the experimental
estimate of the true value. We begin by defining a parameter

Ŝ(τ ) ≡ Ĝ2(τ )− n̂2, (14)

where n̂ = ∑N
i=1 n(iT ), and

n̂2 = [〈n〉− (〈n〉− n̂)]2

≈ 〈n〉2(1−2
〈n〉− n̂
〈n〉 )

= 2〈n〉n̂−〈n〉2. (15)

The noise of the normalized intensity autocorrelation function (g2(τ )− 1) can be obtained by
normalizing the variance of Ŝ(τ ), as

σ(τ ) =

√
var(Ŝ(τ ))

〈n〉4 . (16)

Using Eqs. (13), (14), and (15), the variance of Ŝ(τ ) can be written as

var(Ŝ(τ )) = var(Ĝ2(τ )−2〈n〉n̂)

= var(
1
N

N

∑
i=1

n(iT )[n(iT + τ )−2〈n〉]). (17)

If we define
x(iT ) ≡ n(iT )[n(iT + τ )−2〈n〉], (18)

Eq. (17) can be expanded as [75]

var(Ŝ(τ )) = N−1var(x)+2N−1
N−1

∑
k=1

[〈x(0)x(kT )〉−〈x〉2]× (1− kN−1). (19)

Using the fact in photon statistics [76],

〈 n(iT )!
(n(iT )− l)!

〉 = 〈I(iT )l〉, (20)
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where n(iT ) and I(iT ) are the photon count and the light intensity in time iT seperately, and
writing the higher order correlation functions as sums of products of the second order cor-
relation functions [77], an analytical expression of the variance of Ŝ(τ ) can be derived for
exponentially decayed (g2(τ )−1) = βe−2Γτ after tedious math,

var(Ŝ(τ )) =
1
N

[〈n〉4β2 (1+ e−2ΓT )(1+ e−2Γτ )+2m(1− e−2ΓT )e−2Γτ

(1− e−2ΓT )

+ 2〈n〉3β(1+ e−2Γτ )+ 〈n〉2(1+βe−Γτ )]. (21)

Consequently, the noise (σ(τ )) of the normalized intensity autocorrelation function (g2(τ )−1)
can be expressed as

σ(τ ) =

√
T
t
[β2 (1+ e−2ΓT )(1+ e−2Γτ )+2m(1− e−2ΓT )e−2Γτ

(1− e−2ΓT )

+ 2〈n〉−1β(1+ e−2Γτ )+ 〈n〉−2(1+βe−Γτ )]1/2, (22)

as shown in Eq. (8). And in the limit of ΓT � 1, which is satisfied in most of our experiments,

σ(τ )=

√
1
Γt

[β2(1+e−2Γτ +2mΓTe−2Γτ )+2〈n〉−1βΓT (1+e−2Γτ )+〈n〉−2ΓT (1+βe−Γτ )]1/2.

(23)
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